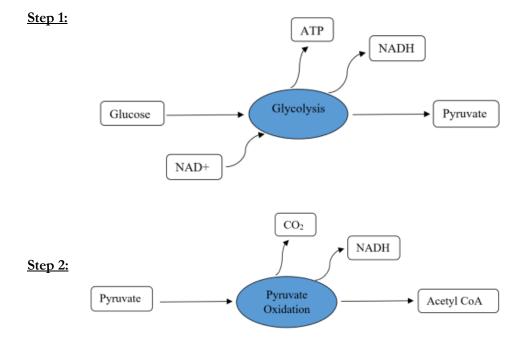
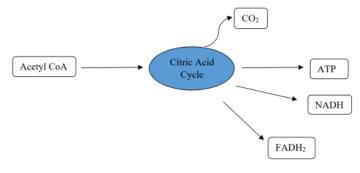


Ch. 9 Cellular Respiration and Fermentation

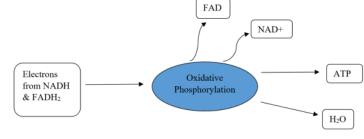

Cellular respiration and **fermentation** are **catabolic pathways** involved in the breaking down of complex molecules to produce energy. The term **cellular respiration** is considered an "umbrella" term that encompasses both **aerobic** and **anaerobic respiration**.

Cellular (aerobic) respiration:

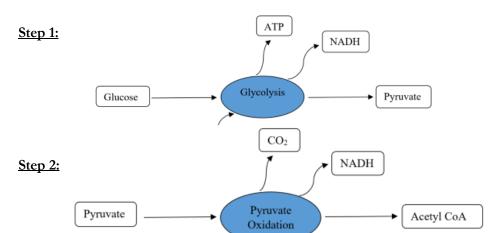
Aerobic respiration occurs in the presence of oxygen. Oxygen is the final electron acceptor for step 4.

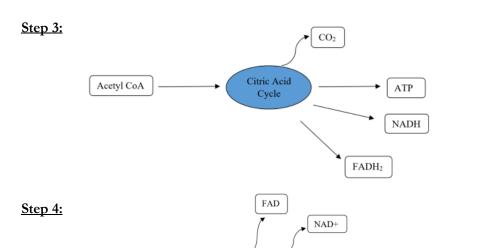

Steps:

1. Glycolysis	Glucose is broken down into pyruvate
	ATP is produced
	NAD+ is converted into NADH
2. Pyruvate Oxidation	Pyruvate is oxidized into acetyl CoA
	CO ₂ is released
	NADH is produced
3. Citric Acid (or Krebs) Cycle	Acetyl CoA is oxidized
	ATP, NADH, and FADH ₂ are produced
	CO ₂ is released
4. Oxidative Phosphorylation	Electron transport chain accepts electrons from
	NADH and FADH ₂
	NADH becomes NAD+
	FADH ₂ becomes FAD
	ATP and H ₂ O are produced



<u>Step 4:</u>




Cellular (anaerobic) respiration:

Anaerobic respiration does not require oxygen. Oxygen is not the final electron acceptor in step 4, depending on the microorganism it will be a different compound (e.g. nitrate ions, sulfate ions, etc.).

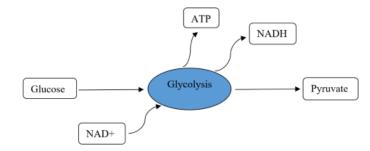
1. Glycolysis	Glucose is broken down into pyruvate
	ATP is produced
	NAD+ is converted into NADH
2. Pyruvate Oxidation	Pyruvate is oxidized into acetyl CoA
	CO_2 is released
	NADH is produced
3. Citric Acid (or Krebs) Cycle	Acetyl CoA is oxidized
	ATP, NADH, and FADH ₂ are produced
	CO ₂ is released
4. Non-Oxidative Phosphorylation	Electron transport chain accepts electrons from
	NADH and FADH ₂
	NADH becomes NAD+
	FADH ₂ becomes FAD
	ATP and H ₂ O are produced

Non-Oxidative Phosphorylation

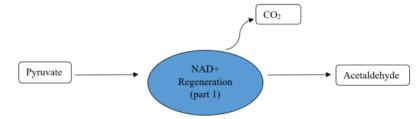
Electrons

from NADH & FADH₂ ATP

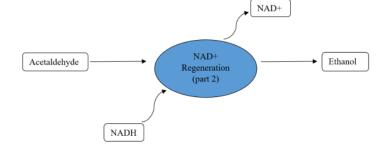
 ${\rm H_2O}$


Fermentation:

There are **two different types** of fermentation: **alcohol fermentation and lactic acid fermentation** Fermentation occurs in the absence of oxygen.

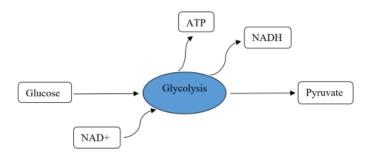

Steps for alcohol fermentation:

1. Glycolysis	Glucose is broken down into pyruvate
	ATP is produced
	NAD+ is converted into NADH
2. NAD+ Regeneration (Part 1)	Pyruvate is converted into acetaldehyde
	CO_2 is released
3. NAD+ Regeneration (Part 2)	Acetaldehyde is reduced to ethanol (by NADH)
	NADH becomes NAD+ (= NAD+ regeneration)



<u>Step 2:</u>

<u>Step 3:</u>



Steps for lactic acid fermentation:

1	
1. Glycolysis	Glucose is broken down into pyruvate
	ATP is produced
	NAD+ is converted into NADH
2. NAD+ regeneration	Pyruvate is converted into lactate (by NADH)

<u>Step 1:</u>

<u>Step 2:</u>

